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1. INTRODUCTION

The response of a fluid system to shear is described by its shear viscosity tj.
Consider boundary driven planar Couette-flow for which the top and
bottom boundaries move in the positive and negative x-directions, respec-
tively. For small boundary velocities a linear velocity profile builds up,
and momentum is transported across the flow. The shear viscosity linearly
relates the rate of transfer of x-momentum perpendicular to the flow, the
xy-component of the stress tensor, to the velocity gradient. To compute
r/ from the microscopic characteristics of a fluid both equilibrium and
nonequilibrium molecular dynamics simulations have been extensively
used.(1,2) In the nonequilibrium case two fundamentally different methods
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Fig. 1. Geometry of the Chernov-Lebowitz model for a top-wall collision. The square
simulation cell with side L is bounded by hard walls on the top and the bottom. Periodic
boundary conditions apply in x-direction.

have been applied. The shear flow is induced either directly by moving
boundaries acting on Newtonian particles(3) or by "fictitious" mechanical
forces coupled homogeneously to the equations of motion of all par-
ticles.(4,5) In both approaches the shearing motion generates heat, which
must be removed from the system to avoid heating and to generate a
steady state. Provided that a deterministic thermostatting scheme is used,
the phase-space distribution collapses onto a multifractal strange attractor,
whose information dimension can be considerably less then the original
phase-space dimension.(3,6)

Recently, Chernov and Lebowitz proposed a two-dimensional
Hamiltonian model for stationary shear flow.(7) It consists of N identical
hard disks of mass m and diameter a interacting through impulsive hard
collisions. The system is periodic in x-direction and bounded by hard
reflecting walls in y-direction. Appropriate energy conserving reflection
rules at the top and the bottom wall generate a shear flow with an
approximately linear velocity profile. As shown in Fig. 1 the momentum of
a particle impinging on the top wall is rotated in the direction of the
positive x-axis. Analogously, the particle's momentum is rotated towards
the negative x-axis at a collision with the bottom wall. These reflection
rules increase the x-component of the momentum at the expense of its
y-component. Since at the wall collisions the momenta are only rotated
while conserving their norm, the model is strictly energy conserving and
no thermostat is required. Nevertheless, the model is dissipative in the
sense that the phase-space volume occupied by a given distribution is
continuously shrinking.

We specify the wall collisions by
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where 0i and 0f are the angles between the momentum direction and the
positive x-axis immediately before and after the collision, respectively. If
the same reflection rule is used for the top and the bottom wall, a single
function g(0) defines the reflection for both boundaries:

Chernov and Lebowitz used two particularly simple reflection rules,

and

with c, b ̂  0 and c ̂  1. The parameter values c = 1 and b-1 = 0 represent
stationary walls with specular reflection, Q f =6 i . Both rules (1.3) and (1.4),
which are henceforth referred to as c-rule and b-rule, respectively, induce
approximately linear velocity profiles. As noted by Chernov and Lebowitz,
the b-rule makes the system retrace its trajectory in configuration space
backward after a reversal of the momenta of all particles, a consequence of
the time-reversal symmetry of the map (1.4). Note that our definition of the
angles differs slightly from that in the original paper.(7)

Due to the dispersing action of the hard collisions the Chernov-
Lebowitz model is chaotic in the sense that two infinitesimally separated
trajectories diverge exponentially with time. The average logarithmic
divergence rates in phase space are described by the so-called Lyapunov
exponents k,. To give a more rigorous definition of these exponents we
consider the phase-space vector r = {q1, q2, q3,..., qN, p1, p2, p3,..., pN}
containing the 2N coordinates and the 2N momentum components of all
disks. The time evolution

of an initial state T(0) consists of a smooth streaming which is interrupted
by collisions between the particles and by collisions of the particles with the
walls. Next we consider a satellite trajectory Ts(t) initially displaced from
the reference trajectory by an infinitesimal vector <Jr(0). In a chaotic
system |£T(t) is growing—on the average—exponentially, causing the
system to be unpredictable for long times. According to Oseledec(8) there
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exists a complete set of linear-independent initial vectors {dr,(0);
l=1,..., 4N] such that the Lyapunov exponents

exist. The A,, which we order according to A, ^A 2 ^ ••• ^4N, are inde-
pendent of the coordinate system and the metric. The whole set of
Lyapunov exponents is referred to as Lyapunov spectrum.

In Hamiltonian systems the Lyapunov exponents appear in pairs
summing up to zero, Ai + A 4 N _ i + 1 =0 for i= 1,..., 2N, due to the symplec-
tic nature of the equations of motion. In a continuous dynamical system
the Lyapunov exponent associated with the direction of the phase flow
vanishes. Moreover, each conserved quantity causes an additional
Lyapunov exponent to vanish. The symmetry found in symplectic
dynamical systems is lost if the system is driven to a nonequilibrium
stationary state. However, if the system is homogeneously driven, the
symmetry is replaced by the so-called conjugate pairing rule.(9) According
to this rule, the pair sums of the largest and smallest exponents, A 1 +1 4 N ,
of the next smaller respective larger exponents, A2 + ^4N-1, and so forth,
are all equal to the same negative value C, provided that the two vanish-
ing exponents associated with the conservation of energy and the non-
exponential behavior in flow direction are previously excluded from the
ordered list of exponents.(10) There are altogether 2N— 1 of such pairs in
our case. For inhomogeneously boundary-driven systems such as the
Chernov-Lebowitz model, however, the symmetry is lost and no pairing
rule exists.

Due to the collisions of the disks with the reflecting walls the phase
volume of the Chernov-Lebowitz model shrinks continuously and the sum
of all Lyapunov exponents, which equals the logarithmic phase-space
volume contraction rate, is negative. Consequently, the phase-space dis-
tribution collapses onto a multifractal strange attractor with vanishing
phase volume. The fractal dimension of this strange attractor can be
estimated with the conjecture of Kaplan and Yorke,(11)

where n is the largest integer for which £ l=11/^0. DKY is the dimension
of a phase-space object, which neither shrinks nor grows and for which the
natural measure is conserved by the flow. It provides a good estimate of the
information dimension D1 of the multifractal attractor.
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In Section 2 we outline our method for the computation of the
Lyapunov exponents for the Chernov-Lebowitz model. We present our
simulation results in Section 3 and summarize our conclusions in Section 4.

2. METHOD

For the computation of full Lyapunov spectra for smooth dynamical
systems the algorithm of Benettin et al.(12) has become a standard. It
follows the time evolution of a reference trajectory and of a complete set
of tangent vectors by solving the original and the linearized equations of
motion, respectively. Periodical reorthonormalization of the tangent vec-
tors avoids the collapse of all tangent vectors into the direction of fastest
growth. By averaging the logarithmic expansion and contraction rates of the
tangent vectors one obtains the Lyapunov exponents. However, for systems
with impulsive hard collisions Benettin's method must be generalized(3) to
include the effect of collisions on the trajectory and on the tangent space
vectors. In this section we consider the collision rules, which allow us to
compute the complete time evolution of the tangent-space vectors.

In the Chernov-Lebowitz model the free streaming is interrupted
by impulsive collisions of the particles either with other particles or with
the walls. The free streaming and the particle-particle collisions in the
bulk were treated in Section III-D of ref. 13, where the same notation was
used as we apply in the present work. We refer to Eqs. (39)-(42) and
Eqs. (68)-(73) of ref. 13 for explicit expressions of the particle-particle colli-
sion rules in phase space and tangent space, respectively. We are left with
the particle-wall collisions which will be treated next.

If particle k collides with the walls its position remains unchanged and
its momentum is changed according to the reflection rule (1.3) or (1.4). The
collision map r f=M(r i) in phase space becomes

where a = t or b refers to they top or the bottom wall, respectively.
Throughout, the superscripts i and f refer to states immediately before and
after a collision, respectively.

Next, we derive the corresponding transformation rules for the tangent
space vectors 5T at particle-wall collisions. Let us assume that a collision
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takes place at the phase point F at time TC. Then a satellite trajectory, dis-
placed by the infinitesimal vectors 8T, collides at a different phase point
Y + 8TC and at a different time TC + Src. A linear approximation in phase
space and in time yields(13)

where F is the right hand side of the equation of motion during the free
streaming,(13) and 3M/3F is the matrix of the derivatives of the collision
map with respect to the phase-space coordinates. Obviously, the delay time
STC is a function of the phase point Fi and of the tangent vector 8Ti. For
a disk-wall collision of the kth particle the time delay 8rc is given by

Here, n is a unit vector perpendicular to the hard wall and pointing into
the simulation box. Since the reflection rules (2.8)-(2.10) for the momen-
tum components are independent of the position of the particle, the matrix
5M/5F has the form

where 1 is the 2N x 2N unit matrix, and 0 is the 2N x 2N zero matrix. B is
the matrix of the derivatives of the outgoing momenta with respect to
the incoming momenta. Only the components of B corresponding to the
colliding particle k are different from zero. From (2.11) the following trans-
formation rules for the tangent vectors can be deduced:

where B is the 2 x 2 matrix
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For notational convenience we have omitted here the index k indicating the
colliding particle. From the reflection rule 6f = f ( 6 i ) we obtain

where p = |pi|. Differentiating the reflection rules (1.3) and (1.4) we obtain
for the c-rule:

and for the b-rule:

Combining the free streaming with the transformations for the disk-disk
and the disk-wall collisions, we are now able to follow the exact time
evolution of the trajectory and of the tangent-space vectors.

We note that Lyapunov spectra can also be calculated by using small
but finite separations between the reference trajectory and the satellite
trajectories instead of infinitesimal tangent vectors. We have used this
approach to check the results of our numerical computations. However,
the finite-difference method is computationally far less efficient then the
infinitesimal, because for every Lyapunov exponent a full satellite trajectory
must be determined, whereas in the infinitesimal approach most of the
computational steps are identical for all tangent vectors and need to be
performed only once.

3. RESULTS AND DISCUSSION

In this section we use the algorithm derived in the last section to
calculate full Lyapunov spectra for the N-particle Chernov-Lebowitz
model for various strain rates. In all our numerical computations we used
units for which the particle mass m, the disk diameter a and the Boltzmann
constant kB are equal to unity. Time is measured in units of (ma2N/K)1 /2 ,
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where K is the total kinetic energy of the system. Since after a scaling of the
momenta the system retraces the same trajectory in configuration space
albeit with a different rate, we restrict ourselves to simulations at K=N.
The Lyapunov exponents are proportional to ^/K. We use the same square
geometry as used in ref. 7. The density of the system is defined as p = N/A,
where A = L2 is the area of the simulation box. Obviously, the centers of
the disks are confined to an area L(L — a). As usual in hard disk simula-
tions we follow a collision-to-collision approach.(14) For computational
efficiency we divide the simulation box into small cells and use neighbor
lists.(15) To start we position the disk centers on the sites of a triangular
lattice and choose the momenta at random from a Gaussian distribution
with zero mean. Then the total momentum is set to zero and the momenta
are rescaled to obtain the kinetic energy K = N.

We computed the maximum Lyapunov exponent of the 200-disk
system at the density p = 0.12733 studied by Chernov and Lebowitz in
ref. 7. The results for various model parameters are summarized in Table 1.
Here, y is the shear rate computed by fitting a straight line to the velocity
profile. We used the same driving parameters c and b as Chernov and
Lebowitz in their original work. Fig. 2 shows A1 as a function of the shear
rate y for the c- and b-models. The errors + AK are indicated by the error
bars and are less than 0.5%. They were estimated from the convergence of
the exponents, plotted as a function of the simulation time, such that the
time-dependent exponents did not deviate more than +Ak from their con-
verged values A during the second half of the simulation run. For both
models the maximum Lyapunov exponent decreases with the shear rate.
The similarity of these curves for both variants of the model indicates that

Table 1. Maximum Lyapunov Exponent A1 and Shear Rate v of the c -Model
and the b -Model for Various Parameters c and b at the Density p= 0.12733a

c

0.90
0.93
0.95
0.97
0.98
0.99

omodel

)'

0.0233
0.0178
0.0133
0.0082
0.0051
0.0033

L1

1.034
1.053
1.062
1.069
1.075
1.074

b

200.0
100.0

70.0
45.5
26.7
12.5

b-model

}'

0.0256
0.0142
0.0085
0.0051
0.0044
0.0025

L1

1.029
1.061
1.067
1.074
1.073
1.075

a The system consists of 200 disks. The parameters are the same as in Table 1 of the original
paper by Chernov and Lebowitz of ref. 7. The Lyapunov exponents and the shear rate are
given in units of ( m a 2 N / K ) - - 1 / 2 .
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Fig. 2. Maximum Lyapunov exponent for a system of N = 200 particles at a density of
p = 0.12733 corresponding to the system studied by Chernov and Lebowitz in ref. 7. The two
curves refer to the c-model and the b-model, respectively. To allow a comparison of the two
models the Lyapunov exponents are given as a function of the shear rate y obtained by fitting
a straight line to the velocity profile. The parameters used are listed in Table 1. The exponents
and the shear rates are given in units of ( m a 2 N / K ) - 1 / 2 .

the different reflection rules basically lead to the same Lyapunov instability
provided they generate identical shear rates.

Since the computational effort for the calculation of full Lyapunov
spectra grows with the square of the particle number, we restricted our-
selves to a relatively small system with N = 36 disks for this task. Full
spectra for the c-model and the b-model are shown in Figs. 3 and 4 for the
density p = 0.6, and in Figs. 5 and 6 for the density p = 0.12733. The
corresponding simulation parameters and results are summarized in Tables
2 and 3. The Lyapunov exponents are given in units of inverse time
(ma 2 N/K) - 1 / 2 . Fig. 7 shows analogous spectra for a very small system con-
taining only 4 disks at a density p = 0.2. To emphasize conjugate exponent
pairs, an index i is used on the abscissa for all Lyapunov spectra in these
figures, such that the conjugate pair formed by the maximum and mini-
mum exponents, { A 1 , A 4 N } , is associated with the index 2N, the pair
{ A 2 , A 4 N - 1 } with the index 2N-1, and so on. Since two vanishing
exponents are excluded from the ordered list of exponents prior to the
definition of the pairs, there are altogether 2N- 1 pairs in each spectrum.
There is no conjugate pair for the index i = 1. Of course, the exponents are
defined only for integer i. They are connected in the figures only for clarity.
At least 1.4 x 106 particle-particle collisions and 1.4 x 105 particle-wall colli-
sions occurred in each simulation. The errors of the Lyapunov exponents,
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Fig. 3. Full Lyapunov spectra for the 36-particle c-model for different values of c at a
density of p = 0.6. The pair sum of conjugate exponents is also indicated by the lines near the
abscissa. The exponents are given in units of ( m a 2 N / K ) - 1 / 2 .

estimated with the method indicated above, are less than + 0.2 % of the
respective maximum exponent. Since for the driving parameters used in
ref. 7 the Lyapunov exponents deviate only modestly from their equilibrium
values, we used a stronger driving for our computations of the full spectra.

In the Chernov-Lebowitz model three Lyapunov exponents vanish.
We verified this with high accuracy for small systems (3 to 4 particles) and

Fig. 4. Full Lyapunov spectra for the 36-particle b-model for different values of b at a
density of p = 0.6. The pair sum of conjugate exponents is also indicated by the lines near the
abscissa. The exponents are given in units of ( m a - N / K ) - 1 / 2 .
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Fig. 5. Full Lyapunov spectra for the 36-particle c-model for different values of c at a
density of p- 0.12733. The pair sum of conjugate exponents is also indicated by the lines near
the abscissa. The exponents are given in units of ( m a 2 N / K ) - 1 / 2 .

various driving parameters c and b. One exponent vanishes due to the
neutral expansion behavior in the direction of the flow. A second exponent
vanishes due to the conservation of kinetic energy. However, there is no
other conserved quantity to account for the third vanishing exponent. This
exponent equals zero due to the invariance of the system to translations
in the x-direction. Such a translation corresponds to the tangent vector

Fig. 6. Full Lyapunov spectra for the 36-particle b-model for different values of b at a
density of p = 0.12733. The pair sum of conjugate exponents is also indicated by the lines near
the abscissa. The exponents are given in units of ( m a 2 N / K ) - 1 / 2 .
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Table 2. Shear Rate y. Viscosity n, Kaplan-Yorke Dimension DKY,
Kolmogorov-Sinai Entropy per Particle hK/N, and Maximum Lyapunov

Exponent A1 of the c- Model and the b- Model at the Density p = 0.12733

c-model

c

0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
100

y

0.122
0.117
0.111
0.104
0.097
0.088
0.080
0.070
0.059
0.047
0.033
0.018
0.000

n

0.240
0.256
0.278
0.297
0.316
0.333
0.346
0.357
0.360
0.363
0.369
0.343

—

DKY

140.77
141.34
141.82
142.22
142.58
142.88
143.14
143.36
143.55
143.71
143.85
143.95
144.00

hK/N

0.447
0.470
0.492
0.513
0.532
0.552
0.569
0.584
0.599
0.610
0.621
0.627
0.630

L1

0.752
0.780
0.811
0.835
0.862
0.888
0.913
0.935
0.952
0.967
0.981
0.987
0.994

b

0.5
0.7
1.0
1.4
2.0
2.8
4.0
5.6
8.0

11.2
16.0
22.4
oo

)'

0.123
0.121
0.116
0.111
0.101
0.090
0.075
0.061
0.048
0.037
0.026
0.019
0.000

b-model

n

0.209
0.222
0.245
0.259
0.286
0.306
0.333
0.348
0.358
0.353
0.386
0.391

DKY

138.50
139.60
140.66
141.52
142.30
142.85
143.28
143.55
143.74
143.85
143.92
143.95
144.00

hK/N

0.398
0.422
0.453
0.481
0.516
0.544
0.573
0.594
0.607
0.617
0.624
0.626
0.630

L1

0.697
0.728
0.762
0.800
0.845
0.879
0.918
0.945
0.963
0.976
0.984
0.989
0.994

Table 3. Shear Rate v- Viscosity n. Kaplan-Yorke Dimension D K Y ,
Kolmogorov-Sinai Entropy per Particle hK/N, and Maximum Lyapunov

Exponent A, of the c-Model and the b- Model at the Density p = 0.6

c-model

c

0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
100

y n

0.330 0.876
0.321 0.929
0.309 0.997
0.295
0.280
0.262
0.240
0.216
0.186
0.151
0.109
0.058

1.063
1.122
1.185
1.256
1.318
1.392
1.441
1.497
1.561

0.000 —

DKY

135.67
137.03
138.21
139.25
140.16
140.96
141.65
142.25
142.78
143.23
143.59
143.87
144.00

hK/N

2.029
2.149
2.274
2.395
2.514
2.632
2.754
2.873
2.993
3.100
3.197
3.270
3.297

L1

2.077
2.159
2.249
2.342
2.429
2.518
2.611
2.700
2.800
2.883
2.959
3.016
3.404

b

0.5
0.7
1.0
1.4
2.0
2.8
4.0
5.6
8.0

11.2
16.0
22.4

i

b-model

y n

0.349 0.729
0.343 0.771
0.333 0.839
0.321 0.910
0.299
0.274
0.240
0.205
0.165
0.130
0.096
0.072

1.023
1.123
1.230
1.319
1.396
1.443
1.489
1.494

0.000 —

DKY

129.77
131.89
134.24
136.40
138.51
140.19
141.55
142.47
143.12
143.49
143.73
143.85
144.00

hK/N

1.655
1.771
1.938
2.115
2.329
2.531
2.735
2.907
3.052
3.148
3.217
3.251
3.297

L1

1.875
1.938
2.042
2.148
2.299
2.446
2.595
2.728
2.842
2.917
2.976
2.997
3.040
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Fig. 7. Lyapunov spectra for a 4-particle system with density p = 0.2. Equilibrium and non-
equilibrium states for the b- and c-model are considered. Each particle is involved in more
than 10 million collisions with other particles, and more than five million collisions with the
walls. The error for each exponent is less than ±0.001, and less than +0.002 for each pair
sum. The pair sum of conjugate exponents is also indicated by the lines near the abscissa. The
exponents are given in units of { m a 2 N / K ) - 1 / 2 .

<Sr={<Sq1, <5q2, <5q3,..., <5qN, S p 1 , < Sp2, <Sp3,..., S p N } , with <5qj= {1 ,0} and
<5pj= {0, 0}. This tangent vector does not change with time as can be seen
by direct insertion into the equations of motion and into the transforma-
tion rules for disk-disk and disk-wall collisions. Consequently, the
Lyapunov exponent corresponding to this tangent vector vanishes. The
existence of this third vanishing exponent is particularly obvious for the
four-particle spectra shown in Fig. 7. There, this exponent is located at i = 2
and is paired with another exponent, which is negative for nonequilibrium
steady states, and zero in equilibrium.

In all figures the full line denotes the equilibrium spectrum of the
Lyapunov exponents which is completely symmetrical with vanishing pair
sums. This symmetry is destroyed as the driving is turned on and the pair
sums are shifted towards more negative values. Then the sum of the
Lyapunov exponents is negative and exactly equal to the phase-space con-
traction rate. The latter has been calculated in ref. 7 by averaging the
logarithm of the compression factor m for particle-wall collisions. If a
particle is reflected at the rigid boundaries the phase space is compressed
by the factor(7)



The shift of the Lyapunov spectra is accompanied by a reduction of the
dimension of the occupied phase space.

An inspection of the nonequilibrium spectra in Figs. 3 to 7 reveals that
the conjugate pairing rule is not obeyed. In these figures the pair sums for
conjugate exponent pairs are indicated by the same symbols as the original
spectra. They are clearly not on a horizontal line and vary considerably
with i. This is clearly seen also for the smallest system of our study, the
four-particle case of Fig. 7. The deviations, particularly for large indexes,
significantly exceed the numerical uncertainty for the pair sum, which is
±0.002.

The deviations from the pairing rule are particularly pronounced for
strong driving. This result does not come as a surprise, since the systems
are inhomogenously driven in the sense that particles interacting with the
boundaries and bulk particles are treated differently. This pairing asym-
metry has already been observed in another inhomogeneous model for
planar shear flow between two moving thermostatted walls.(16) There the
asymmetry is even much more pronounced and affects mainly the few most
negative exponents associated with the thermostatted degrees of freedom.
The way vanishing exponents influence the pairing rule has been clarified
for homogeneous systems in refs. 13 and 10. Analogous considerations
apply also to the inhomogeneous b- and c-models considered here.

Due to the higher collision rate at high densities the Lyapunov
exponents are larger for p = 0.6 than for p = 0.12733. Moreover, at low
densities the spectra have a stronger curvature. At larger densities a step
between the last vanishing exponent and the first strictly positive exponent
can be observed. However, this step does not persist in the thermodynami-
cal limit.(13) As shown in Figs. 3 and 4 the step is retained for moderate
driving parameters but is smoothed out for very strong driving. This was
observed also in the case of thermostatted hard disks subjected to a color
field.(13)

For moderate parameters c and b the positive exponents are shifted
more than the negative exponents by the driving boundaries
Simultaneously, the positive as well as the negative exponents decrease in
magnitude. Of course, to make the sum of all exponents negative, the shift
of the positive exponents must be larger. This effect was observed also in
the color conductivity model and in the externally driven Lorentz gas at
high and intermediate densities.(17) Thus, the driving makes the system less
chaotic. This is reflected also in a decreasing Kolmogorov-Sinai entropy hK

per particle, calculated from the sum of all positive Lyapunov exponents
and shown in Figs. 8 and 9 for the densities p = 0.127 and p = 0.6, respec-
tively. Qualitatively this can be understood by noting that during the wall
collisions the particle momenta are reoriented closer to the x-direction.
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Fig. 8. Kolmogorov-Sinai entropy per particle for the 36-particle system as a function of the
shear rate y at a density of p = 0.12733. hK is given in units of ( m a 2 N / K ) - 1 / 2 .

This increases the order and reduces the chaoticity. As can be inferred from
the data shown in the figures the Kolmogorov-Sinai entropy does not
depend on the specific reflection rule used to generate the shear flow.
Furthermore, it is interesting to note that for the b-model the number of
negative exponents may increase for strong driving, as may be inferred
from Figs. 4 and 6. No analogous behaviour is observed for the c-model
under similar nonequilibrium conditions.

Fig. 9. Kolmogorov-Sinai entropy per particle for the 36-particle system as a function of the
shear rate y at a density of p = 0.6. hK is given in units of ( m a 2 N / K ) - 1 / 2 .

822/88/3-4-20
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Fig. 10. Kaplan-Yorke dimension of the 36-particle system as a function of the shear rate
y at a density of p = 0.12733.

Figures 10 and 11 show the Kaplan-Yorke dimension as a function of
the shear rate for the 36-particle system at p = 0.127 and p = 0.6. As
observed already for hK and A1 also the Kaplan-Yorke dimension DKY

does not depend on the specific reflection rule. For small-enough shear
rates y<0.06 the dimensionality loss AD = 4N—DKY is proportional to y2

as suggested by a expansion of AD in powers of y. It is surprising that this
quadratic behavior persists only over such a small range of y, much smaller

Fig. 11. Kaplan-Yorke dimension of the 36-particle system as a function of the shear rate
y at a density of p = 0.6.



than for thermostatted homogeneous(18) or inhomogeneous(16) driving.
Moreover, for a given shear rate y the dimensionality loss AD is larger for
low than for high densities.

4. CONCLUSION

In this paper we evaluated Lyapunov spectra for the Chernov-
Lebowitz model for boundary driven shear flow. Although the system is
strictly energy conserving it is dissipative and is subjected to a phase-space
contraction. The phase space distribution of such a system collapses onto
a fractal object with zero volume and a dimension less than the phase-
space dimension. The information dimension of the system has been
estimated with the conjecture of Kaplan and Yorke. We found that the
dimensionality loss AD increases with the shear rate y. In equilibrium the
Lyapunov spectra of the model are similar to the spectra of hard disks. In
nonequilibrium states rather strong driving is necessary to shift the spectra
significantly towards more negative values. Since the driving is
inhomogeneous, the Lyapunov spectra do not obey the conjugate pairing
symmetry. The chaotic properties of the model are rather independent from
the specific reflection rule (b- or c-model) provided it induces the same
linear velocity profile.
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